
Introduction to Neural 

Networks



The Biological Neuron

The human brain is made of about 100 billions of such 

neurons.



Characteristics of Biological Neural 

Networks
1) Massive connectivity

2) Nonlinear, Parallel, Robust and Fault Tolerant

3) Capability to adapt to surroundings

4) Ability to learn and generalize from known 

examples

5) Collective behavior is different from individual 

behavior

Artificial Neural Networks mimics some of the properties of 

the biological neural networks



Some Properties of Artificial Neural 

Networks
Assembly of simple processors

Information stored in connections – No Memory

Massively Parallel

Massive connectivity

Fault Tolerant

Learning and Generalization Ability

Robust

Individual dynamics different from group dynamics

All these properties may not be present in a particular 

network



Network Characteristics

Neural Network Characterized by:

1) Architecture

2) Learning (update scheme of weights and/or outputs) 

Architecture

Layered (single /multiple): Feed forward – MLP, RBF

Recurrent : At least one feedback loop – Hopfield

Competitive : p – dimensional array of neurons with a set of        

nodes supplying input to each element of the array – LVQ, 

SOFM 



Learning

 Supervised : In Presence of a teacher

 Unsupervised or Self-Organized : No teacher

 Reinforcement: Trial and error, no teacher, but can asses the 

situations – reinforcement signals.



Model of an Artificial Neuron

uT = (u1,u2,…,uN)      The input vector

wT =(w1,w2,…,wN)     The weight vector



Activation Functions

1) Threshold Function

f(v) = 1    if v 0

= 0    otherwise

2) Piecewise-Linear Function

f(v) = 1    if  v  ½

= v    if  ½> v > - ½ 

= 0    otherwise

3) Sigmoid Function

f(v) = 1/{1 + exp(- av)}

etc..



Perceptron Learning Algorithm

Assume we are given a data set X={(x1,y1),....,( xl,yl)}, 

where x Rn and y = {1,-1}.

Assume X is linearly separable i.e.:

There exists a  w and  b, such that

(wT xi + b)yi > 0,  for all i

Classification of  X means finding a  w and b such that  

(wT xi + b)yi > 0,   for all i

A perceptron can classify X in a finite number of 

steps



Separating 

hyperplane





Linearly separable

OR, AND and NOT are linearly separable 

Boolean Functions

XOR is not linearly separable



Perceptron Learning Algorithm (Contd.)

f(neti) = 1 if neti > 0

f(neti) = -1 otherwise

neti = wT xi

Starting with w (0)=0 we 

follow the following 

learning rule:

w(t+1) = w (t) +α yi xi

for each misclassified point  

xi



The Multilayered Perceptron

MLPs are layered feed-forward 

networks.

The n-th layer is fully connected 

with the (n+1)-th layer.

They are widely used for learning 

input-output mappings from data 

which has varied scientific and 

engineering applications.

Each node in an MLP behaves like a 

perceptron with a sigmoidal 

activation function. 



Multilayered Perceptrons (Contd.)

An MLP can learn efficiently any input-output mapping.

Suppose we have a training set 

X={(x1,y1),....,( xn,yn)}, where x Rp and y Rq.

There is an unknown functional relationship 

between x and y. 

Say,                       y = F(x).

Our objective is to learn F, given X.



Multilayered Perceptrons (Contd.)

When an input vector is given to an 

MLP it computes a function. The 

function F* which the MLP computes 

has the weights and biases of each 

nodes as a parameter. Let W be a vector 

which contains all the weights and 

biases associated with the MPL as its 

elements, thus the MLP computes the 

function F*(W,x).

Our objective would be to find such a 

W which minimizes

E = ½  i ||F*(W,xi) – yi||
2



The Gradient descent algorithm

Let w = ( w1,…,wN)T be a vector of N adjustable parameters.

Let J(w) be a scalar cost function, with the following properties :

1) Smoothness: The cost function J(w) is twice differentiable with 

respect to any pair (wj,wj) for 1  i  j  N.

2) Existence of Solution: At least one parameter vector

wopt = ( w1,opt,…,wN,opt)
T exists, such that
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Is positive definite for w = wopt



The minimizer for J can be found as
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Where w(0) is any initial parameter vector and (k) is a 

positive values sequence of step sizes.

This optimization procedure may lead to a local minima of the 

cost function J.

The Gradient Descent Algorithm (Contd.)



The weights of a MLP which minimizes the error E can also be 

found by the gradient descent algorithm. This method when 

applied to a MLP is called the backpropagation which have two 

passes.

Forward pass: where the output is calculated

Backward pass: According to the error the weights are updated

Modes of update:

Batch Update

Online Update

Training the MLP



Multilayered Perceptron (Contd.)

Some important issues:

How big should be my network ?

No specific answer is known till date. The size of the network 

depends on the complexity of the problem at hand and the training 

accuracy which is desired. A good training accuracy does not 

always means a good network. If the number of free parameters of 

the network is almost the same as the number of data points, the 

network tends to memorize the data and gives bad generalization. 

How many hidden layers to use ?

It has been proved that a single hidden layer is sufficient to do any 

mapping task. But still experience shows that multiple hidden 

layers may be sometimes simplify learning. 



Can a trained network generalize on all data points ?

No, it can generalize only on data points which lies within the 

boundary of the training sample. The output given by an MLP 

is never reliable on data points far away from the training 

sample.

Can I get the explicit functional form of the relationship that 

exists in my data from the trained MLP?

No, one may write a functional form of nested sigmoids, but it 

will (in almost all cases) be far from useful. MLPs are black-

boxes, one cannot retrieve the rules which governs the input-

output mapping from a trained MLP by any easy means.



Generalization

A network is said to generalize well if it produces correct output 

(or nearly so) for a input data point never used to train the 

network.

The training of an MLP may be viewed as a “curve fitting” 

problem. The network performs useful generalization 

(interpolation) as MLPs with continuous activation functions 

leads to continuous outputs.

If an MLP have too many free parameters compared to the 

diversity in the data, the network may tend to memorize the 

training data.

Generalization ability depends on:

1) Representativeness of the training set

2) The architecture of the network

3) The complexity of the problem 



Some applications

1) Function approximation

2) Classification 

a) Land Cover classification for remotely sensed images

b) Optical Character Recognition

many more !!

3) Dimensionality Reduction



Sx y

Function approximation

The system S can be any type of system with 

numerical input and output.



Classification

Classifiers are functions of special types which do not have 

numerical outputs but have class labels as outputs.

D: Rp Npc

The class labels can be numerically coded and thus an MLP 

may be used to learn a classification problem.

Example: We may code three different classes as

0 0 1  -- Class1

0 1 0  -- Class2

1 0 0  – Class3



Both the input and output 

nodes contains p nodes and 

the hidden layer contain q

nodes. Here q<p. 

A pattern  x = (x1,...,xp) is 

presented to the network 

with the same target x.

If the output from the hidden 

layer of the trained network 

is tapped, then we get a 

transformed set of feature 

vectors y Rq

But, these feature vectors y 

are not interpretable.

Dimensionality Reduction by MLP

There can be other approaches too !!



Associate with each input 

node i a multiplier fi.

fi takes values in [0,1].

fi 's takes values near one for 

good features and near zero 

for bad/redundant ones.

A good choice

fi = f(i) =1/(1+e-i)

i's are learnable.

Initialization.

Online Feature Selection by MLP


